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The concept of the central charge in a two-dimensional conformally invariant critical
system is discussed. It is shown how this concept is related to a hyperuniversal amplitude
ratio. In turn we illustrate the computation of its value by means of high-temperature series

expansions for the cases of the Ising model and the three-state Potts model. The results

are quite satisfactory and agree with the known results in these sample cases.

The idea of conformal invariance in critical phenomena stems from scaling
ideas [1]. Suppose we have two blocks of spins of size D, separated by a distance
R from each other, as in Fig. 1. Near the critical point, where the spin-spin
correlations are strong, we expect that the cell-cell correlations will act a lot like
spin-spin correlations. For the Gibbs potential for example, we might expect

that, in d dimensions,
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G(K.— K,H)=D?G(K. - K,H), (1)

where naively,

AN

K.— K= (K.— K)D% H=DH. (2)

Here we denote the magnetic field by H and K = J/kT, where J is the ex-

change integral, k£ is Boltzmann’s constant and 7T is the temperature. But the



correlations aren’t perfect, so we introduce the parameters  and y such that,

K.~ K =DY(K.—K), H=D"H, (3)
such that

G(DY(K,— K),D*H) = D*G(K, — K, H). (4)

If we pick the cell size, D = (K. — K)~'/¥  then (4) becomes,

G(K.— K,H) = (K. - K)/a@ (1, ﬁ) . (5)

From standard thermodynamics and (5) we obtain the relations

2—a=dly, z/ly=A=v+p0, (6)

where « is the index of divergence of the specific heat, v is the index of divergence
of the magnetic susceptibility, (3 is the index of convergence of the spontaneous
magnetization, and A is the “gap” critical index which refers to the rate of closure
of the gap in the distribution of zeros of the partition function in the complex
activity plane as the temperature approaches the critical temperature, K — K..
Of course, we can rewrite the scaling parameters, z and y in terms of the critical

indices as,

y=d/(2—a), z=dA/(2-a). (7)

The spin-spin correlation function can be written as,

g(r, K) = 3{(o7 — (07))(95 = (95))), (8)

o=

where the spins are normalized so the (62) = 1. For cells, we want roughly to

keep this sort of normalization. Thus we write,

D*3=D"*Y o, (9)

cell



and
§(7, Ko — K) = § (5 — (32)(55 — (55)) ) (10)
From the magnetic index, Hd* = H = HD%"* we can conclude the relation

z = d — x between our parameters, and so we can reduce the scaling version of

the spin-spin correlation function to
9(r, K. — K) = (K. — K)*4=*)/vg(r(K, - K)'/¥,1). (11)

by comparison with the definition of the critical index n for the asymptotic
behavior of the spin-spin correlation function for large r, we can also get the

relation,
d+2—n
= 5 )

T

(12)

After this brief review of the rudiments of scaling theory, our next step [2,3]
is to go beyond “scale invariance” in the scaling ideas to “local scale invariance”
where the change of scale is not uniform, however angles are still preserved. That
is to say, “conformal invariance.” Just as scaling invariance was a hypothesis
whose consequences we looked at above, so too “conformal invariance” of (for
example) the spin-spin correlation function is a hypothesis. Here we are speaking
strictly at T' = T, because we know that the simple conformal transformation of
rotational invariance fails for the 2-dimensional Ising model for T" # T..

For d > 2, the only conformal transformations are: translation, rotation,

/

dilation and inversion, i.e., x,

! = x;/2%. These operations form a rather small

conformal group, but still some conclusions can be drawn from the assumptions

of conformal invariance. For example, if we map, ' = [7, then

($a(F1)p6(72) -+ Yo = 147772 by (r] ) (1) - Yo, (13)

where the subscript C denotes the connected part and w* denotes Fisher’s [4]

anomalous dimension of the vacuum.



For the case of d = 2 this theory is related to an extremely large conformal
group, that is to say, any analytic function generates a conformal mapping of the
complex plane. We need to study the algebraic structure to get some information
out of it however. It will involve a special case of the Lie algebras called the
Virasoro [5] algebra. The two dimensional plane can be described by the complex

variable z = x 4 ¢y. It is convenient to introduce,

=& +ily, Z=1§& — i, (14)

with the metric,

ds® = dz dz. (15)

The conformal group in 2-dimensions consists of

2z ((z), zZw((2), (16)

where ¢ and ( are arbitrary functions, and is the direct product,

G=Tol. (17)

The “infinitesimal” transformations of I' are,

z 2+ €(z2), (18)
where
+ o0
e(z) = Z €nz™ L, (19)

with the €, << 1. From “local scale invariance” we expect, (for ¢’s of simple

structure)

(X) = (dal21,21) Pp(22, 22) - -

d¢(z1) dc z1) dc 2) dC(zz) A
- [(d—zl> le ] [ dZQ dZQ ) ]
X (¢a(21 + €(21), 21 + €(Z1)) (22 + e(z2) Zo + &(Z2)) - ), (20)
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where here A, replaces z, in (13) and we take w* = 0. Thus to first order in €

(€ works the same way)

$a(21,21) = dal21,21) + 6(21)8%1%(21751) + A€ (21)ba(z1, 21)- (21)

Let us introduce the operators T'(z) [and of course T(Z)], such that to first order

in €(z),
5€<X> = 5€<d)a(zl, 21)¢b(z2, 22) .. '>C
= 223 |:€(Zi) aazz + EI(Zi)Aai:| <¢a(21, 21)¢b(22, 22) .. '>C
= L O ouer 7000, ) e )
where the contour encloses the points z1, z9,.... By Cauchy’s theorem,

(T(C)pal21,21)Pp(22,22) - - )
=3[t A ot mten )2

23

If we expand,

+oo too 1
T(z)= > 2z CtL,, thenfor Te= Y  enLn = %y{e(C)T(C) d¢, (24)
we have,
6e(X)o = (T X)c. (25)

Now we can compute the commutator of 7' and T.. We note from (23) that the
most singular term will be proportional to (¢ — z;)~%. Since the transformations
we are dealing with are conformal, and therefore preserve angles, the terms in
6(")(2) are all determined through n = 2. Thus we can compute, after noting

that A7 = 2 by analysis of the same sort as explained above that,

[T, T(2)] = €(2)T"(2) + 2€' (2)T(2) + L€’ (). (26)
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The last term is not completely specified by conformal invariance alone but de-
pends on which class, characterized by the new parameter c, the transformation
belongs to. Another way to note the role of c is to observe that the operators
T and T, which are the generators of infinitesimal conformal transformations,
are linear combinations of the components of the energy-momentum tensor 7}, .

For a conformally invariant theory this tensor is traceless, i.e.
O(2,2) = Tho + Tyy = 0. (27)

Furthermore, T only depends on z and T on Z. It has dimension 2 which means

its correlations decay asymptotically with distance as

C

(T()T(0)) = 57 (28)

Thus the parameter c is the amplitude for this decay.
Eq. (26) is equivalent to the relation between the generators of the algebra,
Ly,
[Ln, Lin] = (M —n)Lntr + 15¢(m® —m)6p _nZ, (29)

where 7 is the unit element. In this form we recognize the generators as being
the generators of a Virasoro algebra which has the central charge, c. The element
7 alone is the center (all the elements which commute with every element are
called the center of an algebra) of this algebra. The algebra is called the central
extension of the case where ¢ = 0. By the analysis of the properties of this
algebra, Friedan, et al. [6] found through the use of the Kac [7] formula and

positivity that the only allowed values of ¢ are,

6
, or c=1——— m=2,34,.... (30)

>1
€= m(m+ 1)’

The allowed values of the A’s are correspondingly given by

[(m+1)p—mq)]* — 1
dm(m + 1)

Apg = , p=12....m—-1, ¢q=12,...,p. (31)



Until recently, there has been no way to compute directly (except for finite
size effects) the value of c¢. It has been deduced in several models by sorting
through the possible values of the critical exponents to see which possible ¢
matched the computed exponents for a given model. Since c is a fundamental
bulk property, these approachs are unsatisfactory from a theoretical point of
view. Here we shall use the work of Zamolodchikov [8] and Cardy [9] to calculate
directly the bulk value of the central charge using high temperature expansions.
The key lies in extending the notion of central charge away from the conformally
invariant fixed point (FP), into the scaling regime. As one moves away from the
conformally invariant point, 7' (and similarily 7) becomes a function of z and z
and the trace of the energy-momentum tensor ©(z, zZ) becomes non-zero. Thus

Eq. (28) is replaced by a set of three equations

(T(z,2)T(0,0)) = F(R)/z* (32)
(T(2,2)0(0,0)) = (8(z,2)T(0,0)) = G(R)/z*2 (33)
(0(2,2)0(0,0))¢c = H(R)/Z2Z2 (34)

Here F, G, and H are scaling functions which depend on the distance R = (22)1/ 2
and reduce to ¢/2, 0 and 0, respectively at the conformally invariant point. Since,
the energy momentum tensor is conserved, these scaling functions are related to

each other by the relation [8,9],

dC
R— = —-3H, (35)

where C' = 2F -G — %H. From (34) H is seen to be non-negative and hence C'is a
non-increasing function of R. It also equals c at the FP. This is Zamolodchikov’s
celebrated function, which is always decreasing along RG trajectories and shows
that the RG flows always take one from a higher value of the central charge to a

lower one.



For a Hamiltonian near a critical point of the form H = H* + ¢ [ e(r)d?r,

where H* is the fixed point Hamiltonian, the trace © is given by [9],
O(r) = 2mt(2 — z¢)e(r), (36)

where . is the scaling dimension of the energy €. Thus integrating (35) along a
trajectory which flows from the neighborhood of the critical FP with C = ¢ to

the trivial FP with C' = 0, we obtain the relation
¢ = 6r22(2 — 2.)? / R3(e(R)e(0)).dR (37)
0

Following Singh and Baker [10], we now consider a lattice statistical model with
energies e; specified on the bonds of the lattice, and define the moments of the

energy-energy correlation function as
1 m
pEm =D D riy(leies) — (ei)es)). (38)
i g

Using Eq (37) and the relation 2 — z. = 2/(2 — a), we can now express c as a

hyper-universal amplitude ratio

o 127(K, — K)?
€= Kl—>n}(c (2 —a)? HE.z2-

(39)

For the case a > 0 this result leads to the physically appealing interpretation
that, aside from a constant, c is the singular part of the free-energy per correlation

volume [9]. That is, rewriting (39),

T (1—-0a) . .

Here f; is in units of k7, and £ is in units of lattice spacing.
This quantity can be evaluated by developing high temperature series ex-

pansions for pg 2. These series have been computed by Singh and Baker [10] for
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the Ising model (2-state Potts model) and for the 3-state Potts model in terms

of the convenient expansion variable,

ek —1 (41)
V=
eK —1+4q’
where g is the number of states in the Potts model. They obtained,
pE2 = 2v% + 200" + 1620° + 12000° + 8462v'° + 5780402
13861020 + .-, (g =2) (42a)
1 2 44 1312 154
KE2 = 16 2 + 328 + 160* + o + 312 + P06 7 + 15488 s + 4448v° +
9 9 9 9 9 9
147824 384064 1172696 3651824
5 0!l 4 5 ol 4 5 v'? 4 5 v 4 ... (g=3) (42b)

The critical points for the g-state Potts models are given by,

K. 4 _ o -V
e — 1=/, Y (43)

By an appropriate change of variables, a good form for analysis for the

present cases where the critical temperatures are exactly known, is,

c= (21_2—7;)2 llim pe (1 - })2] , (g=3), (44a)

VU, c

or

c= (2377;)2 llim LB <1 . 2;)2] . (g=2), (44b)

VU, b

as the series for ¢ = 3 is in v and that for ¢ = 2 is in v?. Direct analysis of these
series by the integral approximant method [3] leads to rapidly converging results
for the Ising model and reasonably well converging results for the 3-state Potts

model. We obtain the estimates,

¢c=0.5+0.001 (¢=2), and ¢=0.80+0.01 (¢q=23). (45)
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These results correspond to the cases m = 3 and m = 5 of (30) respectively,
which is most satisfactory and agrees with the known results.
In cases where we do not have the exact value of the critical temperature,

but only series estimates, we have found it expeditious to replace

(K. — K)? — (%) , (46)

and so we are lead to look at the function,

2
N 48T | HE2
C (K) = (2 — a)2 (BHE,z) N (47)
oK
with the result,
c= Kh_r)rIl{cc (K). (48)

Summing this series with ordinary Padé approximants, rather than the more
sophisticated integral approximants, we obtained for the case ¢ = 3, the result

¢ = 0.80 £ 0.01 as before.
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Figure Captions
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Fig. 1 Two strongly correlated D X D blocks at a distance R.
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